CATEGORY 2 - Readiness Standard 3.B

Calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems.

1 The graph describes the number of cubic yards of cement in a truck as it is being poured into the frame for a building slab. What is the rate of change in cubic yards with respect to the number of minutes?

minutes
Circle the appropriate word or number to complete the statement correctly:

The rate of change is $a(n)$ increase of

2 A linear function contains the point $(-1,5)$. The equation $y-5=-2(x+1)$ describes the line. What is the rate of change in y with respect to x ?
(A) -2

B 5
C -1
D 2

3 A driver sets the cruise control of his car at 65 miles per hour. As he drives, the function $f(x)=18-0.05 x$ describes the number of gallons in the car's gas tank. What is the rate of change for this function?

A 18 gallons
B 65 miles per hour
C 0.05 gallons per mile
D 17.95 miles per gallon

4 The table describes the altitude of a small airplane from the moment it started its descent toward an airport until it landed.

Elapsed Time (min)	Altitude (meters)
0	225
2	175
5	100
7	50
9	0

What is the rate of change for the linear function described by the table?

A $1 / 25$ miles per minute
B -50 meters per minute
C 25 miles per hour
D -25 meters per minute

CATEGORY 3 - Readiness Standard 2.A

Determine the domain and range of a linear function in mathematical problems; determine reasonable domain and range values for real-world situations, both continuous and discrete, and represent domain and range using inequalities.

1 Mr. Zepeda is a realtor. His pay is a function of his monthly sales. The equation $p(s)=0.03 s$ describes his monthly pay. Which set of numbers is a reasonable range for p ?

A real numbers
B rational numbers
C positive rational numbers
D positive integers

2

Check TWO correct descriptions of the domain and range of the function in the graph above.Domain: $x<2$

Range: $-3<y \leq 2$Range: $y \leq 2$Domain: all real numbers
Domain: $-6<x \leq 2$Range: all real numbers

3 A restaurant can hold up to 120 people. The function $f(g)=14 g+250$ describes the price Rebecca was quoted for an anniversary party with a minimum of 50 guests. What is a reasonable domain for this function?

A $g \geq 50, g$ an integer
B $g \leq 120, g$ an integer
C $950 \leq \mathrm{g} \leq 1039$, g an integer
D $50 \leq g \leq 120, g$ an integer

4 The graph of a function is shown. Write an inequality to describe the domain.

Select from the symbols below. Each symbol may be used more than once, but not all will be used.

- \square^{-3}
cont'd

CATEGORY 3 - Supporting Standard 5.B

Solve linear inequalities in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides.

1 Solve the inequality, then graph the solution set.

$$
4-3(3+x)>7 x+15
$$

Check TWO correct statements:
\square The endpoint will be a filled circle.
The endpoint will be an empty circle.
The graph will point toward the left.The graph will point toward the right.

Draw the graph:

2 Which is the solution set for the inequality

$$
-2(6 x-8)-7 \leq 3(15-x) ?
$$

A $x \geq 4$
B $x \leq-4$
C $x \leq 4$
D $x \geq-4$

3 A rental company charges a service fee of $\$ 20$ and an additional $\$ 15$ per hour to rent out a ditch digging machine. The inequality $20+15 h \leq 125$ can be used to determine the number of hours a renter could keep the machine and spend no more than $\$ 125$. Which is the solution set to this inequality?

A $h \leq 7$

B $h \geq 7$
C $h \leq \frac{29}{3}$
D $h \leq \frac{29}{3}$

4 Draw the solution set to the statement below on the number line.
"Five times a number, n, decreased by 9 is more than twice the same number."

5 Which number is included in the solution set for the inequality $4(x-1)<11-x$?

A 3
B
C 5
D 11

CATEGORY 4 - Readiness Standard 7.A

Graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x-intercept, y-intercept, zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry.

1 For each function in graphs A - D, check the boxes in the table that are true.

2 What are the x-intercepts of the graph of the function $y=5(x-4)(x-3)$?

A $(0,4)$ and $(0,3)$
B $(3,0)$ and $(4,0)$
C $(-20,0)$ and $(-15,0)$
D $(0,15)$ and $(0,20)$

3 Which equation best represents the graph shown?

A $y=(x-5)(x+3)$
B $y=(x+5)(x-3)$
C $y=(x-1)(y+16)$
D $y=(x+1)(y-16)$

CATEGORY 4 - Readiness Standard 7.A (cont'd)

Graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x-intercept, y-intercept, zeros, maximum value, minimum value, vertex, and the equation of the axis of symmetry.

The graph of $f(x)$ is shown. Use the graph to answer items 8-9.

8 Five points are marked with circles on the parabola. Shade in the circle(s) that show the location of the zeros of the function.

9 What are the coordinates of the vertex and the y-intercept of the parabola?
vertex: $(-2,4)$
y-intercept: $(0,3)$

10 The parabola has a --
A minimum value.
B maximum value.
C both a minimum and a maximum.
D neither a minimum nor a maximum.

11 A part of the graph of a quadratic function is shown.

The graph has a line of symmetry at $x=2$. Between which two negative integers will the graph show a zero of the function?

A Between -7 and -6
B Between -5 and -4
C Between -3 and -2
D Between -2 and -1

12 Graph the function $y=-x^{2}+5$. Plot the vertex and two other points, then sketch the graph all the way to the edges of the grid.

CATEGORY 5 - Readiness Standard 9.D

Graph exponential functions that model growth and decay and identify key features, including y-intercept and asymptote, in mathematical and real-world problems.

1 The graph of an exponential function is shown.

Check TWO statements that are correct.

\square
The function has no zeros.

\square
The graph has a vertical asymptote.
The y-intercept of the function is 7 .
The function is an example of exponential growth.

2 The function $f(x)=32(1.2)^{x}$ describes the average cost of a restaurant meal for two in a certain city over the years 2005 to 2015, where x is the number of years since 2005. What was the average cost in 2005?

A $\$ 32.00$
B $\$ 38.40$
C \$33.20
D $\$ 26.67$

3 Which type of function defined by

$$
f(x)=4(0.25)^{x} ?
$$

Check the appropriate box:
\square Linear
\square Exponential Growth
\square Quadratic
\square Exponential Decay

Graph the function:
a. Draw the asymptote as a dotted line, then plot two points on the graph.
b. Use these features to draw the graph all the way to the edges of the grid.

$\xrightarrow{\text { cont'd }}$

