CATEGORY 2 - Readiness Standard 3.B

Calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems.

Calculate the rate of change for each situation.

1

Rate of Change:
\$0.08 per dollar of purchases.

2 The level of gas in a truck's tank depends on how many miles have been driven. The table shows the gas level during a trip.

miles driven	0	50	125	175	250
gallons of gas in tank	20	16	10	6	0

Rate of Change:
\qquad
-0.08 per

3 The function $f(x)=15+40 x$ describes the cost for a group of x people to park one vehicle and purchase tickets at a theme park.

Rate of Change:
\$40 per __person

4 The table shows a bank's monthly service fee as a function of the number of transactions.

\# of transactions	0	10	15	20	30
monthly fee (S)	5.00	6.50	7.25	8.00	9.50

Rate of Change:
\$0.15 per transaction

5 The function $f(x)=\frac{1}{4} x+2$ represents the number of cups of frosting needed to decorate x cupcakes and a layer cake.

Rate of Change:
$1 / 4$ cup of frosting per \qquad cupcake

6 A machine takes soldering wire from a spool and uses it to make electronic components. The graph shows the amount of wire left on the spool during a work shift.

Rate of Change:
-20 \qquad per \qquad

CATEGORY 5 - Supporting Standard 9.B

Interpret the meaning of the values of a and b in exponential functions of the form $f(x)=a b^{x}$ in real-world problems.

For each situation, explain the significance of each number in the equation as in the example.

Example: The function $f(x)=340(1.07)^{x}$ describes the dollar value of an acre of land x years since Mrs. Brown acquired it.

340: The land was acquired for $\$ 340$.
1.07: Each year the value of the land is $100 \%+7 \%=107 \%$ of what it was the previous year.

1 Mr. Gilligan purchased a new tractor. The function $f(x)=35,000(0.87)^{x}$ describes the value of the tractor x years from the date of purchase.

35,000: The tractor cost \$35,000.
0.87: Each year the tractor is worth $100 \%-13 \%=87 \%$ of what it was the previous year.

2 The profit of a business for its first month in operation can be estimated using the function $f(x)=4,034(1.1)^{x}$, where x is the number of months after the business was started.

4,034: The first month's profit was \$4034.

1.1: Each month the profit is expected to be $100 \%+10 \%$ $=110 \%$ of what it was the previous month.

3 The function $f(x)=180(1.03)^{x}$ describes the balance in a savings account x years from the date the only deposit was made.

180: \$180 was deposited when the account was opened.
1.03: Each year the balance in the account is $100 \%+3 \%=$ 103% of what it was the previous year.

4 A radioactive isotope has a half-life of one day. The function $f(x)=850(0.5)^{x}$ describes the mass, in grams, of a sample of the isotope x days after it was first measured.

850: The sample had an initial mass of 850 g

0.5: Each day the mass is $100 \%-50 \%=50 \%$ of what is was the previous day.

